Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Infect Dis ; 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-20233547

ABSTRACT

BACKGROUND: Serological data on endemic human coronaviruses (HCoVs) and SARS-CoV-2 in southern Africa are scarce. Here, we report on i) endemic HCoV seasonality, ii) SARS-CoV-2 seroprevalence, and iii) predictive factors for SARS-CoV-2 seropositivity and strength of SARS-CoV-2 and HCoV serological response during a 17-month period at the start of the COVID-19 pandemic among adults living with HIV. METHODS: Plasma samples were collected from February 2020 to July 2021 within an outpatient HIV cohort in Lesotho. We used the ABCORA multiplex immunoassay to measure antibody responses to endemic HCoV (OC43, HKU1, NL63, and 229E) and SARS-CoV-2 antigens. RESULTS: Results of 3'173 samples from 1'403 adults were included. Serological responses against endemic HCoVs increased over time and peaked in winter/spring. SARS-CoV-2 seropositivity reached >35% among samples collected in early 2021 and was associated with female sex (p = 0.004), obesity (p < 0.001), working outside the home (p = 0.02), and recent tiredness (p = 0.005) or fever (p = 0.007). Positive correlations were observed between the strength of response to endemic HCoVs and to SARS-CoV-2, and between older age or obesity and the IgG response to SARS-CoV-2. CONCLUSIONS: These results add to our understanding of the impact of biological, clinical, and social/behavioural factors on serological responses to coronaviruses in southern Africa.

2.
Open Forum Infect Dis ; 10(4): ofad150, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2295825

ABSTRACT

Extension of the COVERALL (COrona VaccinE tRiAL pLatform) randomized trial showed noninferiority in antibody response of the third dose of Moderna mRNA-1273 vaccine (95.3% [95% confidence interval {CI}, 91.9%-98.7%]) compared to Pfizer-BioNTech BNT162b2 vaccine (98.1% [95% CI, 95.9%-100.0%]) in individuals with different levels of immunosuppression (difference, -2.8% [95% CI, -6.8% to 1.3%]).

3.
Br J Haematol ; 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2251131

ABSTRACT

Allogeneic haematopoietic cell transplantation (allo-HCT) recipients show impaired antibody (Ab) response to a standard two-dose vaccination against severe acute respiratory syndrome coronavirus-2 and currently a third dose is recommended as part of the primary vaccination regimen. By assessing Ab titres 1 month after a third mRNA vaccine dose in 74 allo-HCT recipients we show sufficient neutralisation activity in 77% of the patients. Discontinuation of immunosuppression before the third vaccine led to serological responses in 50% of low responders to two vaccinations. Identifying factors that might contribute to better vaccine responses in allo-HCT recipients is critical to optimise current vaccination strategies.

4.
Swiss Med Wkly ; 151: w30092, 2021 10 25.
Article in English | MEDLINE | ID: covidwho-2090688

ABSTRACT

BACKGROUND: Few studies have explored the spread of SARS-CoV-2 in schools in 2021, with the advent of variants of concern. We aimed to examine the evolution of the proportion of seropositive children at schools from June-July 2020 to March-April 2021. We also examined symptoms, under-detection of infections, potential preventive effect of face masks, and reasons for non-participation in the study. METHODS: Children in lower (7­10 years), middle (8­13 years) and upper (12­17 years) school levels in randomly selected schools and classes in the canton of Zurich, Switzerland, were invited to participate in the prospective cohort study Ciao Corona. Three testing rounds were completed in June-July 2020, October-November 2020 and March-April 2021. From 5230 invited, 2974 children from 275 classes in in 55 schools participated in at least one testing round. We measured SARS-CoV-2 serology in venous blood, and parents filled in questionnaires on sociodemographic information and symptoms. RESULTS: The proportion of children seropositive for SARS-CoV-2 increased from 1.5% (95% credible interval [CrI] 0.6­2.6%) by June-July 2020, to 6.6% (4.0­8.9%) by October-November, and to 16.4% (12.1­19.5%) by March-April 2021. By March-April 2021, children in upper school level (12.4%; 7.3­16.7%) were less likely to be seropositive than those in middle (19.5%; 14.2­24.4%) or lower school levels (16.0%; 11.0­20.4%). The ratio of PCR-diagnosed to all seropositive children changed from one to 21.7 (by June-July 2020) to one to 3.5 (by March-April 2021). Potential clusters of three or more newly seropositive children were detected in 24 of 119 (20%) classes, 17 from which could be expected by chance. Clustering was not higher than expected by chance in middle and upper school levels. Children in the upper school level, who were wearing face masks at school from November 2020, had a 5.1% (95% confidence interval 9.4% to 0.7%) lower than expected seroprevalence by March-April 2021 than those in middle school level, based on difference-in-differences analysis. Symptoms were reported by 37% of newly seropositive and 16% seronegative children. Fear of blood sampling (64%) was the most frequently reported reason for non-participation. CONCLUSIONS: Although the proportion of seropositive children increased from 1.5% in June-July 2020 to 16.4% in March-April 2021, few infections were likely associated with potential spread within schools. In March-April 2021, significant clustering of seropositive children within classes was observed only in the lower school level.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Humans , Prospective Studies , Schools , Seroepidemiologic Studies
5.
RMD Open ; 8(2)2022 10.
Article in English | MEDLINE | ID: covidwho-2088878

ABSTRACT

OBJECTIVES: To correlate immune responses following a two-dose regimen of mRNA anti-SARS-CoV-2 vaccines in patients with rheumatoid arthritis (RA) to the development of a potent neutralising antiviral activity. METHODS: The RECOVER study was a prospective, monocentric study including patients with RA and healthy controls (HCs). Assessments were performed before, and 3, 6, 12 and 24 weeks, after the first vaccine dose, respectively, and included IgG, IgA and IgM responses (against receptor binding domain, S1, S2, N), IFN-γ ELISpots as well as neutralisation assays. RESULTS: In patients with RA, IgG responses developed slower with lower peak titres compared with HC. Potent neutralising activity assessed by a SARS-CoV-2 pseudovirus neutralisation assay after 12 weeks was observed in all 21 HCs, and in 60.3% of 73 patients with RA. A significant correlation between peak anti-S IgG levels 2 weeks after the second vaccine dose and potent neutralising activity against SARS-CoV-2 was observed at weeks 12 and 24. The analysis of IgG, IgA and IgM isotype responses to different viral proteins demonstrated a delay in IgG but not in IgA and IgM responses. T cell responses were comparable in HC and patients with RA but declined earlier in patients with RA. CONCLUSION: In patients with RA, vaccine-induced IgG antibody levels were diminished, while IgA and IgM responses persisted, indicating a delayed isotype switch. Anti-S IgG levels 2 weeks after the second vaccine dose correlate with the development of a potent neutralising activity after 12 and 24 weeks and may allow to identify patients who might benefit from additional vaccine doses or prophylactic regimen.


Subject(s)
Arthritis, Rheumatoid , COVID-19 , Humans , SARS-CoV-2 , Immunoglobulin A , Prospective Studies , COVID-19/prevention & control , Immunoglobulin G , Immunoglobulin M , Antiviral Agents , Viral Proteins , RNA, Messenger
6.
Swiss Medical Weekly ; 152(Supplement 261):6S, 2022.
Article in English | EMBASE | ID: covidwho-2058056

ABSTRACT

Objectives: Routine monitoring of vaccine-induced anti-S responses following mRNA based SARS-CoV-2 vaccination is not recommended routinely as uncertainties exist about the critical threshold of antibody levels that correlate to protection and the optimal timepoint for determination. In our study, anti-S antibody were analysed over 24 weeks following a standard two-dose regimen of mRNA based anti-SARS-CoV-2 vaccines and correlated to the development and persistence of neutralizing activity against SARSCoV- 2 in patients with rheumatoid arthritis (RA) on DMARD therapy compared to healthy controls (HC). Method(s): The RECOVER study was a prospective, controlled, monocentric study. Assessments were performed before vaccination, and at three, six, 12 and 24 weeks after the first vaccine dose. Result(s): In RA patients, anti-S responses developed slower and resulted in lower peak titers compared to HC. A potent neutralizing activity (NT50) as assessed by a SARS-CoV-2 pseudoneutralization assay was observed in 60.3 % of all 73 RA patients and in all 21 HC after 12 weeks. A significant correlation between peak anti-S levels two weeks after the second vaccine dose and the development of a persistent neutralizing activity against SARS-CoV-2 was observed at week 12 and week 24. The analysis of IgG, IgA, and IgM isotype responses to RBD, S1, S2, and N proteins revealed a delayed IgG response, while IgA and IgM responses were maintained, suggesting a delayed isotype switch in RA patients. Conclusion(s): Peak anti-S IgG levels two weeks after the second vaccine dose significantly predicted the development and persistence of a potent neutralizing activity against SARS-CoV-2 after 12 and 24 weeks. Our data suggest that the early determination of anti- S levels allows the timely identification of non- or poor-responding patients.

7.
J Clin Invest ; 132(12)2022 06 15.
Article in English | MEDLINE | ID: covidwho-2053515

ABSTRACT

BACKGROUNDNeutralizing antibodies are considered a key correlate of protection by current SARS-CoV-2 vaccines. The manner in which human infections respond to therapeutic SARS-CoV-2 antibodies, including convalescent plasma therapy, remains to be fully elucidated.METHODSWe conducted a proof-of-principle study of convalescent plasma therapy based on a phase I trial in 30 hospitalized COVID-19 patients with a median interval between onset of symptoms and first transfusion of 9 days (IQR, 7-11.8 days). Comprehensive longitudinal monitoring of the virological, serological, and disease status of recipients allowed deciphering of parameters on which plasma therapy efficacy depends.RESULTSIn this trial, convalescent plasma therapy was safe as evidenced by the absence of transfusion-related adverse events and low mortality (3.3%). Treatment with highly neutralizing plasma was significantly associated with faster virus clearance, as demonstrated by Kaplan-Meier analysis (P = 0.034) and confirmed in a parametric survival model including viral load and comorbidity (adjusted hazard ratio, 3.0; 95% CI, 1.1-8.1; P = 0.026). The onset of endogenous neutralization affected viral clearance, but even after adjustment for their pretransfusion endogenous neutralization status, recipients benefitted from plasma therapy with high neutralizing antibodies (hazard ratio, 3.5; 95% CI, 1.1-11; P = 0.034).CONCLUSIONOur data demonstrate a clear impact of exogenous antibody therapy on the rapid clearance of viremia before and after onset of the endogenous neutralizing response, and point beyond antibody-based interventions to critical laboratory parameters for improved evaluation of current and future SARS-CoV-2 therapies.TRIAL REGISTRATIONClinicalTrials.gov NCT04869072.FUNDINGThis study was funded via an Innovation Pool project by the University Hospital Zurich; the Swiss Red Cross Glückskette Corona Funding; Pandemiefonds of the UZH Foundation; and the Clinical Research Priority Program "Comprehensive Genomic Pathogen Detection" of the University of Zurich.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19/therapy , COVID-19 Vaccines , Humans , Immunization, Passive/adverse effects , Proof of Concept Study , COVID-19 Serotherapy
8.
AIDS ; 36(10): 1465-1468, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1961257

ABSTRACT

We identified determinants of SARS-CoV-2 mRNA vaccine antibody response in people with HIV (PWH). Antibody response was higher among PWH less than 60 years, with CD4+ cell count superior to 350 cells/µl and vaccinated with mRNA-1273 by Moderna compared with BNT162b2 by Pfizer-BioNTech. Preinfection with SARS-CoV-2 boosted the antibody response and smokers had an overall lower antibody response. Elderly PWH and those with low CD4+ cell count should be prioritized for booster vaccinations.


Subject(s)
COVID-19 , HIV Infections , Aged , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , HIV Infections/complications , Humans , RNA, Messenger , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
9.
PLoS Biol ; 20(7): e3001709, 2022 07.
Article in English | MEDLINE | ID: covidwho-1923649

ABSTRACT

Autoantibodies neutralizing the antiviral action of type I interferons (IFNs) have been associated with predisposition to severe Coronavirus Disease 2019 (COVID-19). Here, we screened for such autoantibodies in 103 critically ill COVID-19 patients in a tertiary intensive care unit (ICU) in Switzerland. Eleven patients (10.7%), but no healthy donors, had neutralizing anti-IFNα or anti-IFNα/anti-IFNω IgG in plasma/serum, but anti-IFN IgM or IgA was rare. One patient had non-neutralizing anti-IFNα IgG. Strikingly, all patients with plasma anti-IFNα IgG also had anti-IFNα IgG in tracheobronchial secretions, identifying these autoantibodies at anatomical sites relevant for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Longitudinal analyses revealed patient heterogeneity in terms of increasing, decreasing, or stable anti-IFN IgG levels throughout the length of hospitalization. Notably, presence of anti-IFN autoantibodies in this critically ill COVID-19 cohort appeared to predict herpesvirus disease (caused by herpes simplex viruses types 1 and 2 (HSV-1/-2) and/or cytomegalovirus (CMV)), which has been linked to worse clinical outcomes. Indeed, all 7 tested COVID-19 patients with anti-IFN IgG in our cohort (100%) suffered from one or more herpesviruses, and analysis revealed that these patients were more likely to experience CMV than COVID-19 patients without anti-IFN autoantibodies, even when adjusting for age, gender, and systemic steroid treatment (odds ratio (OR) 7.28, 95% confidence interval (CI) 1.14 to 46.31, p = 0.036). As the IFN system deficiency caused by neutralizing anti-IFN autoantibodies likely directly and indirectly exacerbates the likelihood of latent herpesvirus reactivations in critically ill patients, early diagnosis of anti-IFN IgG could be rapidly used to inform risk-group stratification and treatment options. Trial Registration: ClinicalTrials.gov Identifier: NCT04410263.


Subject(s)
COVID-19 , Cytomegalovirus Infections , Herpes Simplex , Interferon Type I , Autoantibodies , Critical Illness , Humans , Immunoglobulin G , SARS-CoV-2
10.
Clin Infect Dis ; 75(1): e585-e593, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1886376

ABSTRACT

BACKGROUND: BNT162b2 by Pfizer-BioNTech and mRNA-1273 by Moderna are the most commonly used vaccines to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Head-to-head comparison of the efficacy of these vaccines in immunocompromised patients is lacking. METHODS: Parallel, 2-arm (allocation 1:1), open-label, noninferiority randomized clinical trial nested into the Swiss HIV Cohort Study and the Swiss Transplant Cohort Study. People living with human immunodeficiency virus (PLWH) or solid organ transplant recipients (SOTR; ie, lung and kidney) from these cohorts were randomized to mRNA-1273 or BNT162b2. The primary endpoint was antibody response to SARS-CoV-2 spike (S1) protein receptor binding domain (Elecsys Anti-SARS-CoV-2 immunoassay, Roche; cutoff ≥0.8 units/mL) 12 weeks after first vaccination (ie, 8 weeks after second vaccination). In addition, antibody response was measured with the Antibody Coronavirus Assay 2 (ABCORA 2). RESULTS: A total of 430 patients were randomized and 412 were included in the intention-to-treat analysis (341 PLWH and 71 SOTR). The percentage of patients showing an immune response was 92.1% (95% confidence interval [CI]: 88.4-95.8; 186/202) for mRNA-1273 and 94.3% (95% CI: 91.2-97.4; 198/210) for BNT162b2 (difference: -2.2%; 95% CI: -7.1 to 2.7), fulfilling noninferiority of mRNA-1273. With the ABCORA 2 test, 89.1% had an immune response to mRNA-1273 (95% CI: 84.8-93.4; 180/202) and 89.5% to BNT162b2 (95% CI: 85.4-93.7; 188/210). Based on the Elecsys test, all PLWH had an antibody response (100.0%; 341/341), whereas for SOTR, only 60.6% (95% CI: 49.2-71.9; 43/71) had titers above the cutoff level. CONCLUSIONS: In immunocompromised patients, the antibody response of mRNA-1273 was noninferior to BNT162b2. PLWH had in general an antibody response, whereas a high proportion of SOTR had no antibody response.


Subject(s)
COVID-19 , Viral Vaccines , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Cohort Studies , Humans , Immunocompromised Host , SARS-CoV-2 , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
11.
Clin Infect Dis ; 2022 May 06.
Article in English | MEDLINE | ID: covidwho-1831050

ABSTRACT

BACKGROUND: Vaccination may control the COVID-19 pandemic, including in nursing homes where many high-risk people live. We conducted extensive outbreak investigations. METHODS: We studied an outbreak at a nursing home in Switzerland where vaccination uptake of mRNA vaccines against SARS-CoV-2 was 82% among residents as of Jan 21/2021. After a vaccinated symptomatic HCW was diagnosed with COVID-19 on Feb 22, we did an outbreak investigations in house A (47 residents, 37 HCWs) using SARS-CoV-2-specific PCR in nasopharyngeal swabs. We performed whole-genome sequencing of SARS-CoV-2 and serological analyses. RESULTS: We identified 17 individuals with positive PCR tests; ten residents (five vaccinated) and seven HCWs (three vaccinated). Median age among residents was 86 years (interquartile range [IQR] 70-90) and 49 years (IQR 29-59) among HCWs. Among the five vaccinated residents, 60% had mild disease and had 40% no symptoms, whereas all five unvaccinated residents had mild to severe disease and two died. The vaccine effectiveness for the prevention of infection among the residents was 73.0% (95% Cl 24.7-90.1). The 12 available genomes were all alpha variants. Neutralizing titers were significantly higher in vaccinated individuals upon re-exposure (>1 week after diagnosis) than in vaccinated, unexposed HCWs (p=0.012). Transmission networks indicated four likely or possible transmissions from vaccinated to other individuals, and 12 transmission events from unvaccinated individuals. CONCLUSIONS: COVID-19 outbreaks can occur in nursing homes, including transmission from vaccinated persons to others. Outbreaks might occur silently, underlining the need for continued testing and basic infection control measures in these high-risk settings.

12.
Transplant Cell Ther ; 28(4): 214.e1-214.e11, 2022 04.
Article in English | MEDLINE | ID: covidwho-1705633

ABSTRACT

Vaccines against SARS-CoV-2 have been rapidly approved. Although pivotal studies were conducted in healthy volunteers, little information is available on the safety and efficacy of mRNA vaccines in immunocompromised patients, including recipients of allogeneic hematopoietic cell transplantation (allo-HCT). Here we used a novel assay to analyze patient- and transplantation-related factors and their influence on immune responses to SARS-CoV-2 vaccination over an extended period (up to 6 months) in a large and homogenous group of allo-HCT recipients at a single center in Switzerland. We examined longitudinal antibody responses to SARS-CoV-2 vaccination with BNT162b2 (BioNTech/Pfizer) and mRNA-1273 (Moderna) in 110 allo-HCT recipients and 86 healthy controls. Seroprofiling recording IgG, IgA, and IgM reactivity against SARS-CoV-2 antigens (receptor-binding domain, spike glycoprotein subunits S1 and S2, and nucleocapsid protein) was performed before vaccination, before the second dose, and at 1, 3, and 6 months after the second dose. Patients were stratified to 3 groups: 3 to 6 months post-allo-HCT, 6 to 12 months post-allo-HCT, and >12 months post-allo-HCT. Patients in the 3 to 6 months and 6 to 12 months post-allo-HCT groups developed significantly lower antibody titers after vaccination compared with patients in the >12 months post-allo-HCT group and healthy controls (P < .001). Within the cohort of allo-HCT recipients, patients age >65 years (P = .030), those receiving immunosuppression for prevention or treatment of graft-versus-host disease (GVHD) (P = .033), and patients with relapsed disease (P = .014) displayed low humoral immune responses to the vaccine. In contrast, the intensity of the conditioning regimen, underlying disease (myeloid/lymphoid/other), and presence of chronic GVHD had no impact on antibody levels. Antibody titers achieved the highest levels at 1 month after the second dose of the vaccine but waned substantially in all transplantation groups and healthy controls over time. This analysis of long-term vaccine antibody response is of critical importance to allo-HCT recipients and transplant physicians to guide treatment decisions regarding revaccination and social behavior during the SARS-CoV-2 pandemic.


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , Aged , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , SARS-CoV-2 , Vaccination
13.
Nat Commun ; 12(1): 6703, 2021 11 18.
Article in English | MEDLINE | ID: covidwho-1526075

ABSTRACT

Determination of SARS-CoV-2 antibody responses in the context of pre-existing immunity to circulating human coronavirus (HCoV) is critical for understanding protective immunity. Here we perform a multifactorial analysis of SARS-CoV-2 and HCoV antibody responses in pre-pandemic (N = 825) and SARS-CoV-2-infected donors (N = 389) using a custom-designed multiplex ABCORA assay. ABCORA seroprofiling, when combined with computational modeling, enables accurate definition of SARS-CoV-2 seroconversion and prediction of neutralization activity, and reveals intriguing interrelations with HCoV immunity. Specifically, higher HCoV antibody levels in SARS-CoV-2-negative donors suggest that pre-existing HCoV immunity may provide protection against SARS-CoV-2 acquisition. In those infected, higher HCoV activity is associated with elevated SARS-CoV-2 responses, indicating cross-stimulation. Most importantly, HCoV immunity may impact disease severity, as patients with high HCoV reactivity are less likely to require hospitalization. Collectively, our results suggest that HCoV immunity may promote rapid development of SARS-CoV-2-specific immunity, thereby underscoring the importance of exploring cross-protective responses for comprehensive coronavirus prevention.


Subject(s)
SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , COVID-19/immunology , COVID-19/metabolism , Coronavirus 229E, Human/immunology , Coronavirus 229E, Human/metabolism , Humans , Immunoglobulin G/metabolism
14.
Trials ; 22(1): 724, 2021 Oct 21.
Article in English | MEDLINE | ID: covidwho-1477452

ABSTRACT

BACKGROUND: Late 2019, a new highly contagious coronavirus SARS-CoV-2 has emerged in Wuhan, China, causing within 2 months a pandemic with the highest disease burden in elderly and people with pre-existing medical conditions. The pandemic has highlighted that new and more flexible clinical trial approaches, such as trial platforms, are needed to assess the efficacy and safety of interventions in a timely manner. The two existing Swiss cohorts of immunocompromised patients (i.e., Swiss HIV Cohort Study (SHCS) and Swiss Transplant Cohort Study (STCS)) are an ideal foundation to set-up a trial platform in Switzerland leveraging routinely collected data. Within a newly founded trial platform, we plan to assess the efficacy of the first two mRNA SARS-CoV-2 vaccines that reached market authorization in Switzerland in the frame of a pilot randomized controlled trial (RCT) while at the same time assessing the functionality of the trial platform. METHODS: We will conduct a multicenter randomized controlled, open-label, 2-arm sub-study pilot trial of a platform trial nested into two Swiss cohorts. Patients included in the SHCS or the STCS will be eligible for randomization to either receiving the mRNA vaccine Comirnaty® (Pfizer/BioNTech) or the COVID-19 mRNA Vaccine Moderna®. The primary clinical outcome will be change in pan-lg antibody response (pan-Ig anti-S1-RBD; baseline vs. 3 months after first vaccination; binary outcome, considering ≥ 0.8 units/ml as a positive antibody response). The pilot study will also enable us to assess endpoints related to trial conduct feasibility (i.e., duration of RCT set-up; time of patient recruitment; patient consent rate; proportion of missing data). Assuming vaccine reactivity of 90% in both vaccine groups, we power our trial, using a non-inferiority margin such that a 95% two-sided confidence interval excludes a difference in favor of the reference group of more than 10%. A sample size of 380 (190 in each treatment arm) is required for a statistical power of 90% and a type I error of 0.025. The study is funded by the Swiss National Science Foundation (National Research Program NRP 78, "COVID-19"). DISCUSSION: This study will provide crucial information about the efficacy and safety of the mRNA SARS-CoV-2 vaccines in HIV patients and organ transplant recipients. Furthermore, this project has the potential to pave the way for further platform trials in Switzerland. TRIAL REGISTRATION: ClinicalTrials.gov NCT04805125 . Registered on March 18, 2021.


Subject(s)
COVID-19 , Viral Vaccines , Aged , COVID-19 Vaccines , Humans , Immunocompromised Host , Multicenter Studies as Topic , Pilot Projects , RNA, Messenger , Randomized Controlled Trials as Topic , SARS-CoV-2
15.
BMC Infect Dis ; 21(1): 298, 2021 Mar 24.
Article in English | MEDLINE | ID: covidwho-1150393

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome virus 2 (SARS-CoV-2) is spreading globally and causes most frequently fever and respiratory symptoms, i.e. Coronavirus disease 2019 (COVID-19), however, distinct neurological syndromes associated with SARS-CoV-2 infection have been described. Among SARS-CoV-2-infections-associated neurological symptoms fatigue, headache, dizziness, impaired consciousness and anosmia/ageusia are most frequent, but less frequent neurological deficits such as seizures, Guillain-Barré syndrome or ataxia may also occur. CASE PRESENTATION: Herein we present a case of a 62-year-old man who developed a subacute cerebellar syndrome with limb-, truncal- and gait ataxia and scanning speech 1 day after clinical resolution of symptomatic SARS-CoV-2 infection of the upper airways. Apart from ataxia, there were no signs indicative of opsoclonus myoclonus ataxia syndrome or Miller Fisher syndrome. Cerebral magnetic resonance imaging showed mild cerebellar atrophy. SARS-CoV-2 infection of the cerebellum was excluded by normal cerebrospinal fluid cell counts and, most importantly, absence of SARS-CoV-2 RNA or intrathecal SARS-CoV-2-specific antibody production. Other causes of ataxia such as other viral infections, other autoimmune and/or paraneoplastic diseases or intoxication were ruled out. The neurological deficits improved rapidly after high-dose methylprednisolone therapy. CONCLUSIONS: The laboratory and clinical findings as well as the marked improvement after high-dose methylprednisolone therapy suggest a post-infectious, immune-mediated cause of ataxia. This report should make clinicians aware to consider SARS-CoV-2 infection as a potential cause of post-infectious neurological deficits with an atypical clinical presentation and to consider high-dose corticosteroid treatment in case that a post-infectious immune-mediated mechanism is assumed.


Subject(s)
COVID-19/complications , Cerebellar Ataxia/complications , Cerebrum/diagnostic imaging , Humans , Male , Middle Aged , RNA, Viral
16.
BMJ ; 372: n616, 2021 03 17.
Article in English | MEDLINE | ID: covidwho-1140323

ABSTRACT

OBJECTIVES: To examine longitudinal changes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence and to determine the clustering of children who were seropositive within school classes in the canton of Zurich, Switzerland from June to November 2020. DESIGN: Prospective cohort study. SETTING: Switzerland had one of the highest second waves of the SARS-CoV-2 pandemic in Europe in autumn 2020. Keeping schools open provided a moderate to high exposure environment to study SARS-CoV-2 infections. Children from randomly selected schools and classes, stratified by district, were invited for serological testing of SARS-CoV-2. Parents completed questionnaires on sociodemographic and health related questions. PARTICIPANTS: 275 classes in 55 schools; 2603 children participated in June-July 2020 and 2552 in October-November 2020 (age range 6-16 years). MAIN OUTCOME MEASURES: Serology of SARS-CoV-2 in June-July and October-November 2020, clustering of children who were seropositive within classes, and symptoms in children. RESULTS: In June-July, 74 of 2496 children with serological results were seropositive; in October-November, the number had increased to 173 of 2503. Overall SARS-CoV-2 seroprevalence was 2.4% (95% credible interval 1.4% to 3.6%) in the summer and 4.5% (3.2% to 6.0%) in late autumn in children who were not previously seropositive, leading to an estimated 7.8% (6.2% to 9.5%) of children who were ever seropositive. Seroprevalence varied across districts (in the autumn, 1.7-15.0%). No significant differences were found among lower, middle, and upper school levels (children aged 6-9 years, 9-13 years, and 12-16 years, respectively). Among the 2223 children who had serology tests at both testing rounds, 28/70 (40%) who were previously seropositive became seronegative, and 109/2153 (5%) who were previously seronegative became seropositive. Symptoms were reported for 22% of children who were seronegative and 29% of children who were newly seropositive since the summer. Between July and November 2020, the ratio of children diagnosed with SARS-CoV-2 infection to those who were seropositive was 1 to 8. At least one child who was newly seropositive was detected in 47 of 55 schools and in 90 of 275 classes. Among 130 classes with a high participation rate, no children who were seropositive were found in 73 (56%) classes, one or two children were seropositive in 50 (38%) classes, and at least three children were seropositive in 7 (5%) classes. Class level explained 24% and school level 8% of variance in seropositivity in the multilevel logistic regression models. CONCLUSIONS: With schools open since August 2020 and some preventive measures in place, clustering of children who were seropositive occurred in only a few classes despite an increase in overall seroprevalence during a period of moderate to high transmission of SARS-CoV-2 in the community. Uncertainty remains as to whether these findings will change with the new variants of SARS-CoV-2 and dynamic levels of community transmission. TRIAL REGISTRATION: NCT04448717.


Subject(s)
COVID-19/epidemiology , Students/statistics & numerical data , Adolescent , COVID-19 Serological Testing , Child , Cluster Analysis , Cohort Studies , Female , Humans , Longitudinal Studies , Male , Prospective Studies , SARS-CoV-2 , Seroconversion , Seroepidemiologic Studies , Switzerland/epidemiology
17.
Stroke ; 51(12): 3719-3722, 2020 12.
Article in English | MEDLINE | ID: covidwho-1050419

ABSTRACT

BACKGROUND AND PURPOSE: Case series indicating cerebrovascular disorders in coronavirus disease 2019 (COVID-19) have been published. Comprehensive workups, including clinical characteristics, laboratory, electroencephalography, neuroimaging, and cerebrospinal fluid findings, are needed to understand the mechanisms. METHODS: We evaluated 32 consecutive critically ill patients with COVID-19 treated at a tertiary care center from March 9 to April 3, 2020, for concomitant severe central nervous system involvement. Patients identified underwent computed tomography, magnetic resonance imaging, electroencephalography, cerebrospinal fluid analysis, and autopsy in case of death. RESULTS: Of 32 critically ill patients with COVID-19, 8 (25%) had severe central nervous system involvement. Two presented with lacunar ischemic stroke in the early phase and 6 with prolonged impaired consciousness after termination of analgosedation. In all but one with delayed wake-up, neuroimaging or autopsy showed multiple cerebral microbleeds, in 3 with additional subarachnoid hemorrhage and in 2 with additional small ischemic lesions. In 3 patients, intracranial vessel wall sequence magnetic resonance imaging was performed for the first time to our knowledge. All showed contrast enhancement of vessel walls in large cerebral arteries, suggesting vascular wall pathologies with an inflammatory component. Reverse transcription-polymerase chain reactions for SARS-CoV-2 in cerebrospinal fluid were all negative. No intrathecal SARS-CoV-2-specific IgG synthesis was detectable. CONCLUSIONS: Different mechanisms of cerebrovascular disorders might be involved in COVID-19. Acute ischemic stroke might occur early. In a later phase, microinfarctions and vessel wall contrast enhancement occur, indicating small and large cerebral vessels involvement. Central nervous system disorders associated with COVID-19 may lead to long-term disabilities. Mechanisms should be urgently investigated to develop neuroprotective strategies.


Subject(s)
COVID-19/diagnostic imaging , Cerebral Arteries/diagnostic imaging , Cerebral Hemorrhage/diagnostic imaging , Cerebrovascular Disorders/diagnostic imaging , Ischemic Stroke/diagnostic imaging , Aged , Antibodies, Viral/cerebrospinal fluid , Brain Ischemia/diagnostic imaging , Brain Ischemia/etiology , COVID-19/cerebrospinal fluid , COVID-19/complications , COVID-19/physiopathology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Cerebral Hemorrhage/etiology , Cerebrospinal Fluid/immunology , Cerebrospinal Fluid/virology , Cerebrovascular Disorders/cerebrospinal fluid , Cerebrovascular Disorders/etiology , Cerebrovascular Disorders/physiopathology , Consciousness Disorders/etiology , Consciousness Disorders/physiopathology , Contrast Media , Critical Illness , Electroencephalography , Female , Humans , Ischemic Stroke/etiology , Magnetic Resonance Imaging , Male , Middle Aged , SARS-CoV-2 , Severity of Illness Index , Switzerland , Tertiary Care Centers , Tomography, X-Ray Computed
18.
Antimicrob Resist Infect Control ; 9(1): 191, 2020 12 02.
Article in English | MEDLINE | ID: covidwho-953026

ABSTRACT

BACKGROUND: Super-spreaders are individuals infecting disproportionately large numbers of contacts. They probably play a crucial role in the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We describe a super-spreading event within a team working in an open-space office and investigate factors potentially having facilitated SARS-CoV-2 transmission. METHODS: In this retrospective cohort study, semi-structured telephone interviews with all team members were carried out to identify symptoms, contacts, and adherence to basic hygiene measures. During site visits, we gathered information about workplace and seating arrangements. The secondary attack rate in office and households was calculated. Potential respiratory viral co-infections were assessed by multiplex PCR. SARS-CoV-2 whole-genome sequencing was performed using a tiled-amplicon sequencing approach. RESULTS: Of 13 team members, 11 fell ill with Coronavirus disease 2019 (COVID-19). Due to the sequence of events and full genome sequence data, one person was considered the index case for this outbreak, directly infecting 67 to 83% of the teammates. All team members reported repetitive close contacts among themselves during joint computer work, team meetings and a "Happy Birthday" serenade. Two individuals shared nuts and dates. The arrangement of the office and meeting rooms precluded sufficient adherence to physical distancing. The index case and a further individual were diagnosed with an adenovirus serotype 4 co-infection. CONCLUSION: We identified several environmental and behavioral factors that probably have facilitated the transmission of SARS-CoV-2. The relevance of the adenovirus co-infection remains unclear and merits further investigation.


Subject(s)
COVID-19/complications , COVID-19/transmission , Coinfection , SARS-CoV-2 , COVID-19/virology , Cohort Studies , Humans , Respiratory Tract Infections/complications , Retrospective Studies , Risk Factors
19.
Int J Public Health ; 65(9): 1549-1557, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-871428

ABSTRACT

OBJECTIVES: This longitudinal cohort study aims to assess the extent and patterns of seroprevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in school-attending children, and their parents and school personnel. It will examine risk factors for infection, the relationship between seropositivity and symptoms, and temporal persistence of antibodies. METHODS: The study (Ciao Corona) will enroll a regionally representative, random sample of schools in the canton of Zurich, where 18% of the Swiss population live. Children aged 5-16 years, attending primary and secondary schools, and their parents and school personnel are invited. Venous blood and saliva samples are collected for serological testing in June/July 2020, in October/November 2020, and in March/April 2021. Bi-monthly questionnaires will cover SARS-CoV-2 symptoms and tests, health, preventive behavior, and lifestyle information. Hierarchical Bayesian logistic regression models will account for sensitivity and specificity of the serological tests in the analyses and complex sampling structure, i.e., clustering within classes and schools. RESULTS AND CONCLUSIONS: This unique school-based study will allow describing temporal trends of immunity, evaluate effects of preventive measures and will inform goal-oriented policy decisions during subsequent outbreaks. Trial registration ClinicalTrials.gov Identifier: NCT04448717, registered June 26, 2020. https://clinicaltrials.gov/ct2/show/NCT04448717 .


Subject(s)
COVID-19/blood , COVID-19/epidemiology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Schools , Adolescent , Bayes Theorem , Child , Child, Preschool , Humans , Longitudinal Studies , Pandemics , Prospective Studies , Risk Factors , Saliva/chemistry , Seroepidemiologic Studies , Switzerland
SELECTION OF CITATIONS
SEARCH DETAIL